D,E and F are respectively the mid-points of the sides BC, CA and AB of a ∆ABC. Show that

(i) BDEF is a parallelogram.

(ii) ar(∆DEF) = \frac { 1 }{ 4 } ar (∆ABC)

(iii) ar(||gm BDEF) = \frac { 1 }{ 2 } ar(∆ ABC)

(i) BDEF is a parallelogram.

(ii) ar(∆DEF) = \frac { 1 }{ 4 } ar (∆ABC)

(iii) ar(||gm BDEF) = \frac { 1 }{ 2 } ar(∆ ABC)