A bag contains 4 balls. Two balls are drawn at random, and are found to be white. What is the probability that all balls are white?
We need to compute P(all balls white | drew 2 white balls).
This is a conditional probability so we use Bayes Law.
P(A | B) = P(B | A) × P(A) / P(B).
Where A = all balls white
B = draw 2 white balls
P(B) is not given. I will assume there are 3 possible worlds: 4 whites, 3 white and 1 non white,
and 2 whites and 2 non-white. I need to also know the probabilities for each of these worlds. I will assume they are equal, the standard assumption if no information is given.
P(B) = P(B | 4W)×P(4W) +P(B | 3W, 1non-white)×P(3W, 1 non-white) + P(B | 2white,2 non-white).
P(B | 4W) = 1
P(4W) = 1/3 = P(3W and 2 non) = P(2W and 2 non)
P(B | 3W and 1 non) = 3/4×2/3 = 1/2
P(B | 2W and 1 non) = 2/4×1/3 = 1/6
Putting this all together with Bayes:
P(4W in bag | drew 2 white) = 1× 1/3/ ( 1×1/3 + 1/2×1/3 + 1/6×1/3) = 3/5