How do you find dy/dx of xy+siny=x^2?

dydx-of-xysinyx2

#1

How do you find dy/dx of xy+siny=x^2 ?

Answer:

(2x-y) / (x+cosy) this is the answer look at the Implicit Differentiation …

we used product role (xy)
diffrentiate w.r.t “x”
(x d/dx y +y dx/dx) + d/dx ( siny) = d/dy( x^2)
X DY/DX +1 +cosy dy/dx = 2x
x dy/dx +cosy dy/dx=2x-1
dy/dx ( x+cosy) =2x-1
dy/dx=2x-1/x+cosy ans