Cos(2x)+ 5= 4sinx

cos2x-5-4sinx-4tan3x

#1

cos(2x)+ 5= 4sinx
4tan(3x)+5= 1
2cos(4x)= 1
6 sin^2x+ 5= 8
5 sin(2x)- 6sinx= 0
3cos(2x)+ cosx= -1?

Answer:

That’s not correct. cos(2x)=2 (cos^2 (x))+1 So:
cos(2x)+5=0
cos(2x)=-5
2cos^2 (x) + 1 = -5
2 cos ^2 (x) = -6
Not possible because the maximum possible output for any cos(x) is 1.